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Abstract-Lithiation of the sulfones l-3 in TBF at -78” with lithium diisopropyl amide (L,DA) is regioselective, since 
deuteration of the a-lithiosulfone 4.results in formation of the a-monodeuteriated sulfone 7. Higher temperature 
causes an intramolecular l&addition of the lithiated sulfone 4 to the lithiated cyclic sulfone 19 and an intermolecular 
l&addition of the lithiated sulfones 5 and 6. The cyclisation of Z-sulfone 1 has been used for the isolation of the 
isomeric E-sulfone 2 from mixtures of 1 and 2. The lithiated sulfones 4-6 are chlorinated with hexachloroethane 
(HCE). Due to acid/base reactions the u,ndichlorinated cyclic sulfone 23 and u,a’-dichlorinated butadienyl sulfones 
13-15 are formed in small amounts. 

As part of a broader investigation into the Michael induced 
Ramberg/Bkkhmd (MIRD)’ isoprene homologation, we 
have examined the chlorination of the methyl-ld- 
butadienyl sulfones l-3’ (Scheme 1). 

&hlorosulfones are frequently prepared by reaction of 
sulfonyl carbanions with a chlorine donor. a&Un- 
saturated sulfones, however, are sensitive towards free- 
radical and anionic polymerisation and require special 
reaction conditions for the chlorination. 

It is therefore not surprising that the usual chlorinating 
agents (CL, NCS, SO& PhIC& and KOH/CCL) failed to 
give the desired a-chlorosulfones 10-12, when applied to 
the title compounds, although it should be mentioned that 
KOH/CCL has been reported to lead to a-halosulfone 
intermediates in reactions with unsaturated sulfones.3 

Previously’ hexachloroethane (HCE) has been used 
with success in our laboratory for the chlorination of cyclic 
cY-lithiosulfones. 

In this communication we wish to report the conversion 
of the butadienyl sulfones l-3 into the corresponding 
cr-chloro derivatives 10-12 using HCE as chlorinating 
agent. 

“Comparable results were obtained with the methyl-, geranyl-, 
benzyl-, Z-3-methyl-2-pentenyl- and 2-methyl-2-propenylsulfonyl 
substituted Z-2-methyl-1,3-butadienes. 

RDSJLTS AND DISCUSSION 

Synthesis of the a-lithiosuffones derived from 1,2 and 3. 
Treatment of the sulfones l-3 with one equivalent of IDA 
in THF at -78” leads to the cr-lithiosulfones 4-6, respec- 
tively. The lithiation is highly regioselective, since 
acidification of 4 by addition of a well-stirred suspension of 
DCI/D,O in THF of -78” resulted in the formation of only 7 
under incorporation of one D atom at the allylic position (Y 
to the SO,. The low reaction temperature is essential, 
because butadienyl sulfones are very susceptible to 
anionic 1,4_additionpolymerization. At -78”, however, the 
a-lithiosulfones 46 can be kept in THF solutions for 
several hours. At higher temperatures 5 and 6 gradually 
polymerise. This polymerisation is complete in a few 
minutes, when the lithiation is attempted at room tem- 
perature. A solution of the a-lithiosulfone 4 is even less 
stable because of the Z-configuration of the 2-methyl-1,3- 
butadienyl moiety. A rise in temperature to approximately 
-55” leads to a fast intramolecular l&addition to give the 
cyclised a-lithiosulfone 19 (Scheme 2). The cyclic sulfone 
20 is obtained upon acidification.” When DCI/D20 is used 
for this purpose, only one Datom is incorporated at the 
allylic C2atom of the A3-dihydrothiapyran-1, l-dioxide 20. 
We have not been able to establish the relative c~nfigura- 
tions at the asymmetric centres. 

Separation of 2 from mixtures of 1 and 2. We have 

R=H ) W-H 1 

R=LI , R’=H 4 

R.D , R’=H 7 

R-Cl , R’=H 10 

R=CI , W-Cl 13 

R=H , R’=CI 16 

Scheme 1. 
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Scheme 2. 

reported the laborious separation of the Z- and E-isomers 
1 and 2 from their mixtures by several chromatography 
techniques.* The difference in reactivity of the a-lithiosul- 
fones 4 and 5 can be exploited for the facile isolation of the 
E-isomer by converting mixtures of 1 and 2 into mixtures 
of 20 and 2. The cyclic sulfone 20 and its open-chain 
E-isomer 2 are easily separated on a practical scale. 

Starting from a mixture, consisting of 20% Z- and 80% 
E-sulfone, the corresponding a-lithiosulfones 4 and 5, 
were prepared in THF at -78”, as described before. 
Addition of this a-lithiosulfone mixture to a THF solution 
of HCI/H20 produced sufficient heat to trigger the cyclisa- 
tion of Z-sulfone 4, without intolerable polymerization of 
the E-sulfone 5. Sulfone 2 was isolated in a purity of over 
93%. 

HCE-chlorinatiori of a-lithiosulfones 4, S and 6. The 
general reaction, underlying the HCE-chlorination of sul- 
fonyl carbanions, is shown in eqn (1) (Scheme 3). Sulfonyl 
carbanions, which carry a second hydrogen at the anionic 
centre, like in 24, have the possibility to enter in an 
acid/base reaction with the more acidic chlorinated 
product 25, as can be seen in eqn (2). 

When a dilute solution of 24 is added to a concentrated 
solution of HCE, present in great excess, the main product 
will be monochlorinated sulfone 25. Slow addition of one 
equivalent of HCE, on the other hand, to a concentrated 
solution of 24 will lead to a 1: 1 mixture of the unconverted 
parent sulfone 26 and the a,a-dichlorosulfone, derived 
from reaction of the a-chlorosulfonyl carbanion 27 with 
HCE. 

The addition of solutions of the a-lithiosulfones 4-6 of 
-78” through a “hot” stopcock of a dropping-funnel to a 
solution of an excess of HCE in THF of -78” already 
causes appreciable cyclisation of the a-lithiosulfone 4 
(‘Table 1, reaction 1) and polymerisation of 5 and 6. For this 
reason, the chlorination of the a-lithiosulfones 4-6 was 
performed by addition of an excess of precooled solid 
HCE to the a-lithiosulfone solutions of -78” (Table 1, 

bHydrolysis of the dianion of sulfone 1 with DCl/&O in THF of 
-78” afforded a&-dideuteriated sulfone 1. 

‘LDA was prepared by dropwise addition from a syringe of a 
hexane soln of n-BuLi to a well-stirred THF soln of 1 eq. of 
diisopropyl amide at -78°C. followed by stirring for 20 min. 

:’ 
c;’ 5’ 

reactions 2-4). The various products obtained after 
chromatographic separation of the reaction mixtures are 
listed in Table 1. 

Even at extremely low temperature the intramolecular 
l&addition of the a-lithiosulfone 4 to give the lithiated 
cyclic sulfone 19 (Scheme 2) could not be suppressed 
completely during the chlorination of 4, as can be seen 
from reaction 2 (Table 1). The formation of most of the 
isolated compounds can be explained according to eqns (1) 
and (2), given in Scheme 3. To our surprise no a,a- but 
a,a’dichlorination is observed with the sulfones l-3. For 
reasons not clear to us, the vinylic H at the a’-position of 
the monohalonagenated product is more acidic than the 
a-H.b 

The acid/base reaction shown in Scheme 4 explains the 
formation of the a-chloro-a’-lithiosulfones which are the 
presumable precursors of the observed dichlorosulfones. 

The a-monochlorosulfones 10-12 were used as Michael 
acceptors in the head-to-tail and tail-to-tail isoprene 
homologation. Full details will be published in a forth- 
coming communication. 

ExPmhmTAL 

All reactions were performed under N2. The content of the 
n-BuLi in hexane soln (Merck-Schuchardt) was determined by 
titration? HCE (B%) was purchased from Aldrich, and used 
without purification. Diisopropyl amide was dried over KOH and 
distilled. THF was freshly distilled from LAH prior to use. 
Chromatographic separations were carried out & prepacked 
columns (Merck, Lobar, LiChroprep Si 60), using Et0AclP.A. as 
an eluens at 2 atm pressure. ‘H NMR (TMS, S = 0, CDCII) was 
recorded on a varian A 60D and a Varian XL-100 NMR Spec- 
trometer: IR on a Perkin-Elmer model 177. M.DS were determined 
on a L&Wet&r apparatus and are uncorr&ed. 

Synthesis of the a-lithiosuifones derived fmn 1,2 and 3’ 
General procedure. A THF soln (80 ml) of 1 g (5 mmole) of the 

sulfone of--78” was added dropwise to a well-stirred THF soln 
(40 ml) of LDA’ (5 mmole1 of -7k over a neriod of 30 min. The so 
formeb dark-red hFsoln’oithe lithiated sblfone was stirred for an 
additional 30 min at -78” and used either for reprotonation or for 
HCE-halogenation. 

Deuteriation of the a-lithiosulfone 4 
A THF soln (IS ml) of 20% DCI (4 mmole) and a0 (0.5 ml) of 

-78” was added-in one portion to a well-stirreh THF ioln(25 mi) of 
the cr-lithiosulfone 4 (1 mmole) of -78”, prepared as described 

5’ C’, P 
-son-C- l Cl -C-C-Cl - C=C t LiCl 
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Scheme 3. 
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Table 1. HCE-chlorination of a-lithiosulfones 45 and 6 

Reaction Compound 
Monochloro 

sulfones 

Isolated products (% yield) 

Hichloro Recovered 
sulfones sulfones 

Polymeric 
products 

1 4 

2 4 

3 5 

4 6 

2X16) 
1W) 
M(2) 
22(2) 
ltl(22)C 
ll(40) 
17(2)t 
12(33) 

2%) 
1304) 

u(6) 20(4) (27) 
l(4) 

14(5) 2(5) (42) 

143) Y3) (50) 

*a-Monochlorinated geranyl- and a-cyclogeranyl-Z-2-methyl-l, 3-butadienyl sulfones were 
obtained in comparable yields upon chlorination. 

tcompound 17 was isolated as a chromatographic fraction mixed with 14. 

A&L./ + A&. - 
Scheme 4. 

above. After warming to r.t. the mixture was diluted with water and 
extracted with CHCls. Drying over l&SO, and evaporation of the 
solvents atforded the nearly pure a-monodeuteriated 7 in almost 
quantitative yield. Monodeuteriation could be determined from the 
sulfonyl methylene-absorption in the ‘H NMR. 

3 - Methyl - 6 - (2’ - methyl - 1’ - pmpenyl) - A’ - dihydmthiapyran - 
I,1 - dioxide @I) 

A THF soln (25 ml) of 4 (I mmole) of -78” was added dropwise to 
a well-stirred THF soln (15 ml) of 7% HCI (4 mmole) and H20 (2 ml) 
of r.t.After warming to r.t. the mixture was diluted with CHCI; 
(50 ml). The CHCh soln washed with water and dried over MaSO.. 
Evaporation of the solvents afforded the crude #) in 91% ;ield. 
Chromatographic purification furnished pure 28 as a colourless oil 
IR (CHCI,): 2980,145O (C-H), 1670 (weak, C=C), 132O,l27O,ll50 
and 1120 cm-’ (SO& ‘H NMR: 5.57 (C4-H, m); 5.09 (Cl-H, d, Jr* 
IOHz); 3.95-3.65 (G-H, m); 3.51 (CZH, broad s); 2.73-2.50 
(U-H, m); 1.82 and 1.77 (U-Me, C2’-Me, U-H, two s). (Found: 
C, 59.92; H,8.09; S, 15.91,CalcdforCloHlaSOs: C; 59.%; H,8.05; S, 
16.01; 0, 15.98%). 

Addition of the THF soln (25 ml) of 4 (1 mmole) of -78” to a 
well-stirred THF soln (15ml) of 20% DC1 (4mmole) and 40 
(0.5 ml) of r.t. afforded 21 in 87% yield. 

Sepamtion of suifone 2 from mix&w of 1 and 2 
A 1 g mixture (5 mmole) of 22% Z-sulfone 1 and78% E-sulfone 2 

was converted into a THF soln (8OmI) of 4 and 5 of -783 as 
described before. Addition of this soln to a well-stirred THF soln 
(20 ml) of cone HCI (7 ml) and Hz0 (10 ml) of r.t. over a period of 
1 hr was performed through a “hot” stopcock of a dropping-funnel. 
Warming to r.t. and work-up with CHCls furnished the crude 
E-sulfone 2, contaminated with 28 and polymerisation products, in 
95% vield. Chromatoaraohic seoaration afforded the unstable 2* in 
38% yield in a purity if over 93%, contaminated with less than 7% 
of its Z-isomer 1. 

HCE-chlorination of the a-lithiosulfones 4,s and 6 
General procedure. 8.3 g (35 nunole; 7 eq excess) solid HCE, 

precooled in a dispenser” with liquid Nz, was added in one portion 
to a THF soln (120 ml) of the Ir-lithiosulfone (5 mmole) of -78”. 
prepared as described before. The mixture was‘stirred for 30 min: 
After warming to r.t. the mixture was diluted with 7% HCI (20 ml) 

“Addition of an excess of HCE of r.t. to the THF soln of -78” 
resulted in complete polymerisation. 

Q&A A&./ 
2 2 

and extracted with CHCIs. Evaporation of the solvents and the 
excess of HCE at 5OV.S mm furnished a mixture of the chlorinated 
sulfones. Chromatographic separation afforded in the order of 
decreasing Rr value: residual HCE, dichlorobutadienyl, a’- 
monochlorobutadienyl, cyclic dichloro, cyclic monochloro, o- 
monochlorobutadienyl, unconverted and cyclic nonchlorinated 
sulfone. Most compounds were obtained in a colourless crystalline 
form upon recrystallisation from ether/n-hexane. Nearly all 
chlorinated sulfones are sensitive towards oxygen at r.t. 

HCE-chlorination of 4 
Compound 10 was obtained inacrystalline form (m.p. 69-700). IR 

(CHCIs): 3860,1450 (C-H), 1660,1625,1570 (C=C), 1340,1320,13tKJ 
and 1120 cm-’ (SO& ‘H NMR: 7.59 ((Y-H, X-part of ABX, Jti 
II Hz, Jex 17.5 Hz); 6.12 (Cl’-H; broad s); 5.70 (C4’-H, B-part of 
ABX, J,,nO.S Hz);S.S8(C4’-H, A-partof ABX);5.31 (Cl-HandC2-, 
s, As-system); 2.11 (C2’-Me, d, J 0.5 Hz); 1.85 and 1.78 (U-H and 
C>Me, two s) (Found: C, 51.19; H, 6.35; S, 13.72; 0, 13.84, Cl, 
15.02. Calcd for LHlrSChCk C. 51.17: H. 6.44: S. 13.66: 0.13.63: 
Cl, 15.10%). .- .- - 

Compound 13. m.p. 6768.5’; IR (CHCIs): 3040, 1450 (C-H), 
1660,155O (weak, C=C), 1350,132o and I160 cm-’ (SO& ‘H NMR: 
7.77 (C3’-H, X-part of ABX, JU 11 Hz, Jnx 17.5 Hz); 5.69(Cl-H, d, 
J,-2 IO Hz); 5.67 (C4’-If), B-part of ABX, Jm 0 Hz); 5.54 (C4’-H, 
A-Dart of ABXI: 5.36 (C2-H. d with allvlic I.r.-couolina): 2.25 
(C?-Me, s); I.86 and 1.79 (C4-H and &Me, two d eachwith J 
0.5 Hz). (Found: C, 44.76; H, 5.21; S, 11.76; Cl, 26.31. Calcd for 
Cn,HwSOsC12: C, 44.62; H, 5.24; S, 11.91; 0, 11.89; Cl, 26.34%). 

Compound 16 was obtained as an oil. ‘H NMR: 7.69 (C3’-H, 
X-part of ABX, JU I I Hz, Jnx 17.5 Hz): 5.61 (C4’-H, B-part of 
ABX); 5.46 (C4’-H, A-part of ABX); 5.33-5.05 (C2-H, apparent t 
with allylic I.r.-coupling, X-part of ABX); 4.11-3.55 (Cl-H, m, 
AB-part of ABX); 2.19 (C2’-Me, s); I.86 and 1.76 (C6H and 
U-Me. two d each with J 0.5 Hz). 

The cyclic 22 was obtained as a viscous oil (m.p. of ca IO-IS’). IR 
(CHCL): 3040.2940.1450 (C-H). 1670 (weak. C=Cc). 1330.1160 and 
i14Ocm-’ (&. ‘l-i NMR: 5.765.59‘(CbH, m);‘5.03 (U-H, d 
with allylic I.r.coupling, Jr-s 9Hz); 4.75 (Cl-H, s); 4.44-4.12 
@6-H, m); 2.80-2.50 (CS-H, m); 1.93 (U-Me, d, JO.5 Hz): 1.85 and 
1.80 (C3’-H and C2’-Me, two d each with J 0.5 Hz). (Found: C, 
51.35; H, 6.37; S, 13.51; Cl, 15.07. Calcd for C&,$QCI: C,51.17; 
H, 6.44; S. 13.66; 0, 13.63; Cl, 15.10%). 

Compound 23. m.p. 72.5-74’; IR (CHCls): 3050, 2930, 1440 
(C-H), 1660 (C=C), 1340 and 1150 cm-’ (SO& ‘HNMR: 5.66-5.49 
(ChH, m); 5.08 (Cl’-H, d with I.r.coupling, JIVd 9 Hz); 4.764.45 
(C6-H, m); 2.82-2.53 (CS-H, m); 2.09 (U-Me, d, J 1 Hz); 1.87 and 
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!.83 (CY-H and C2'-:Me, two d each with J 1 Hz). (Found: C, 45.04; 
H, 5.37; S, 11.63; O, 11.55; CI, 25.97. Calcd for CIoHt4SO2CI 2" C, 
44.62; H, 5.24; S, 11.91; O, il.89; CI, 26.34%). 

HCE-chlorination of S 
Compound 11. m.p. 59--60°; IR (CHCi3): 3040, 1450 (C-H), 1660, 

1630,1590 (C=C), 1330 and 1145 cm -j (SO2). !H NMR: 6.39 (C3"H, 
X-part of ABX, J ~  10.5 Hz, Jex 17 Hz); 6.19 (C I'-H, broad s); 5.72 
(C4'-H, B-part of ABX); 5.50 (C4'-H, A-part of ABX); 5.30 (CI-H 
and C2-H, s, A2-system); 2.25 (C2"Me, d, J 0.5 Hz); 1.81 and 1.74 
(C4-H and C3-Me, two s). (Found: C, 51.27; H, 6.48; S, 13.52; C1, 
15.21 Calcd for CtoHIsSO2CI: C, 51.17; H, 6.44; S, 13.66; O, 13.63; 
CI, 15.10%). 

Compound 14 was obtained as a colourless oil. JH NMR: 7.05 
(CY-H, X-part of ABX, J ~  11Hz, Jex 17.5Hz); 5.86 (C4'-H, 
B-part of ABX); 5.76 (C l-H), d, J~_210 Hz); 5.69 (C4'-H, A-part of 
ABX); 5.41 (C2-H, d with l.r.-coupling); 2.45 (C2'-M e, s); 1.89 and 
1,83 (C4--H and C3-Me, two d each with J 1 Hz). 

Compound 17 was obtained as a Chromatographic fraction mixed 
with 14, Its presence was deduced from the C2'-methyl absorption 
in the IH NMR (2.37 ppm, s). 

HCE-chlorination of 6 
The a-monochlorosulfone 12 was obtained in a crystalline form 

(m.p. 67-69°). IR (CHCI3): 3020,1440 (C-H), 1660,1625,1590 (C=C), 
1320, 1285 and ll30cm -t (SO2). IH NMR: 7.32 (C2'-H, d, Jr-2, 
15Hz); 6.39 (CI'H, d); 5.51 (C4'-H, broad s); 5.33 (CI-H and 
C2-H, s, A2-system); 1.90 (C3"Me, d, J 0.5 Hz); 1.86 and 1.79 (C--4H 
and C3-Me, two s). (Found: C, 51.22; H, 6.47; S, 13.82; Cl, 15.26. 
Calcd for C~oHtsSO2Cl: C, 51.17; H, 6.44; S, 13.66; O, 13.63; CI, 
15.10%). 

Compound lS was obtained as a colourless oil. *H NMR: 7.43 
(C2'-H, s); 5.71 (CI-H, d, Jt-2 10 Hz); 5.60-5.45 (C4'-H, m); 5.37 
(C2-H, d with l.r.-coupling); 2.11 (CY-Me, d, J 0.5 Hz); 1.87 (C4-H) 
and C3-Me, two d each with J0.5 Hz). 
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